Sunday, June 14, 2009

2) BIOLOGICAL ENGINEERING

by afan

1- AGRICULTURAL ENGINEERING

Agricultural engineering is the engineering discipline that applies engineering science and technology to agricultural production and processing. Agricultural engineering combines the disciplines of animal biology, plant biology, and mechanical, civil and chemical engineering principles with a knowledge of agricultural principles.

The first curriculum in Agricultural Engineering was established at Iowa State University by J. B. Davidson in 1905. The American Society of Agricultural Engineers, now known as the American Society of Agricultural and Biological Engineers, was founded in 1907.

Agricultural Engineers may perform tasks as planning, supervising and managing the building of dairy effluent schemes, irrigation, drainage, flood and water control systems, perform environmental impact assessments, agricultural product processing and interpret research results and implement relevant practices. A large percentage of agricultural engineers work in academia or for government agencies such as the United States Department of Agriculture or state agricultural extension services. Many are employed by manufacturers of agricultural machinery, equipment and agricultural product processing. Agricultural engineers work in production, sales, management, research and development, or applied science.

2- BIOCHEMICAL ENGINEERING

Biochemical engineering is a branch of chemical engineering or biological engineering that mainly deals with the design and construction of unit processes that involve biological organisms or molecules, such as bioreactors. Biochemical engineering is often taught as a supplementary option to chemical engineering or biological engineering due to the similarities in both the background subject curriculum and problem-solving techniques used by both professions. Its applications are used in the food, feed, pharmaceutical, biotechnology, and water treatment industries.

A bioreactor may refer to any device or system that supports a biologically active environment.[1] In one case, a bioreactor is a vessel in which is carried out a chemical process which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from liters to cubic meters, and are often made of stainless steel.

A bioreactor may also refer to a device or system meant to grow cells or tissues in the context of cell culture. These devices are being developed for use in tissue engineering.

On the basis of mode of operation, a bioreactor may be classified as batch, fed batch or continuous (e.g. Continuous stirred-tank reactor model). An example of a continuous bioreactor is the chemostat.

Industrial biotechnology (known mainly in Europe as white biotechnology) is the application of biotechnology for industrial purposes, including manufacturing, alternative energy (or "bioenergy"), and biomaterials. It includes the practice of using cells or components of cells like enzymes to generate industrially useful products. The Economist speculated (as cited in the Economist article listed in the "References" section) industrial biotechnology might significantly impact the chemical industry. The Economist also suggested it can enable economies to become less dependent on fossil fuels.

The industrial biotechnology community generally accepts an informal divide between industrial and pharmaceutical biotechnology. An example would be that of companies growing fungus to produce antibiotics, e.g. penicillin from the penicillium fungi. One view holds that this is industrial production; the other viewpoint is that such would not strictly lie within the domain of pure industrial production, given its inclusion within medical biotechnology.

3- BIO-MEDICAL ENGINEERING

Biomedical engineering (BME) is the application of engineering principles and techniques to the medical field. It combines the design and problem solving skills of engineering with medical and biological sciences to improve healthcare diagnosis and treatment.

Biomedical engineering has only recently emerged as its own discipline, compared to many other engineering fields; such an evolution is common as a new field transitions from being an interdisciplinary specialization among already-established fields, to being considered a field in itself.

Much of the work in biomedical engineering consists of research and development, spanning a broad array of subfields (see below). Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EEGs, biotechnologies such as regenerative tissue growth, and pharmaceutical drugs & biopharmaceuticals.

Biomedical engineering is a highly interdisciplinary field, influenced by (and overlapping with) various other engineering and medical fields. This often happens with newer disciplines, as they gradually emerge in their own right after evolving from special applications of extant disciplines. Due to this diversity, it is typical for a biomedical engineer to focus on a particular subfield or group of related subfields. There are many different taxonomic breakdowns within BME, as well as varying views about how best to organize them and manage any internal overlap; the main U.S. organization devoted to BME divides the major specialty areas as follows:

Bioinstrumentation
Biomaterials
Biomechanics
Cellular, Tissue, and Genetic Engineering
Clinical Engineering
Medical Imaging
Orthopaedic Bioengineering
Rehabilitation Engineering
Systems Physiology
Sometimes, disciplines within BME are classified by their association(s) with other, more established engineering fields, which can include:

Chemical engineering - often associated with biochemical, cellular, molecular and tissue engineering, biomaterials, and biotransport.
Electrical engineering - often associated with bioelectrical and neural engineering, bioinstrumentation, biomedical imaging, and medical devices. This also tends to encompass Optics and Optical engineering - biomedical optics, imaging and related medical devices.
Mechanical engineering - often associated with biomechanics, biotransport, medical devices, and modeling of biological systems.

4- BIOMECHANICAL ENGINEERING

Biomechanical engineering is a subdiscipline in engineering that applies principles of mechanics to biological systems. It stems from the scientific discipline of biomechanics and usually uses the tools and approaches of mechanical engineering. Many cases are related to Biomedical engineering and Agricultural engineering

5- COMPUTER ENGINEERING

Computer Engineering (also called Electronic and Computer Engineering or Computer Systems Engineering) is a discipline that combines both Electrical Engineering and Computer Science. Computer engineers usually have training in electrical engineering, software design and hardware-software integration instead of only software engineering or electrical engineering. Computer engineers are involved in many aspects of computing, from the design of individual microprocessors, personal computers, and supercomputers, to circuit design. This field of engineering not only focuses on how computer systems themselves work, but also how they integrate into the larger picture.

Usual tasks involving computer engineers include writing software and firmware for embedded microcontrollers, designing VLSI chips, designing analog sensors, designing mixed signal circuit boards, and designing operating systems.Computer engineers are also suited for robotics research, which relies heavily on using digital systems to control and monitor electrical systems like motors, communications, and sensors.

The first accredited computer engineering degree program in the United States was established at Case Western Reserve University in 1971; as of October 2004 there were 170 ABET-accredited computer engineering programs in the US.

Due to increasing job requirements for engineers, who can design and manage all forms of computer systems used in industry, some tertiary institutions around the world offer a bachelor's degree generally called computer engineering. Both computer engineering and electronic engineering programs include analog and digital circuit design in their curricula. As with most engineering disciplines, having a sound knowledge of mathematics and sciences is necessary for computer engineers.


6- CLINICAL ENGINEERING

Clinical engineering is a specialty within Biomedical engineering responsible primarily for applying and implementing medical technology to optimize healthcare delivery. Roles of clinical engineers include training and supervising biomedical equipment technicians (BMETs), working with governmental regulators on hospital inspections/audits, and serving as technological consultants for other hospital staff (i.e. physicians, administrators, I.T., etc.). Clinical engineers also advise medical device producers regarding prospective design improvements based on clinical experiences, as well as monitor the progression of the state-of-the-art in order to redirect hospital procurement patterns accordingly.

Their inherent focus on practical implementation of technology has tended to keep them oriented more towards incremental-level redesigns and reconfigurations, as opposed to "revolutionary" R&D or cutting-edge ideas that would be many years from clinical adoptability; however, there is nonetheless an effort to expand this time-horizon over which clinical engineers can influence the trajectory of biomedical innovation. In their various roles, they form a sort of "bridge" between product originators and end-users, by combining the perspectives of being both 1) close to the point-of-use ("front lines"), while also 2) trained in product and process design. Clinical Engineering departments at large hospitals will sometimes hire not just biomedical engineers, but also industrial/systems engineers to help address operations research, human factors, cost analyses, safety, etc.

7- EGRONOMICS

Ergonomic research The ergonomics of a product, is the way the user interacts with it. For example, the ergonomics of a door handle is how the user is able to use the product, well and efficently. the way the product is made in order to suit a typical use.

Ergonomics is concerned with the ‘fit’ between people and their work. It takes account of the worker's capabilities and limitations in seeking to ensure that tasks, equipment, information and the environment suit each worker.

To assess the fit between a person and their work, ergonomists consider the job being done and the demands on the worker; the equipment used (its size, shape, and how appropriate it is for the task), and the information used (how it is presented, accessed, and changed). Ergonomics draws on many disciplines in its study of humans and their environments, including anthropometry, biomechanics, mechanical engineering, industrial engineering, industrial design, kinesiology, physiology and psychology.

Typically, an ergonomist will have a BA or BS in Psychology, Industrial/Mechanical Engineering or Health Sciences, and usually an MA, MS or PhD in a related discipline. Many universities offer Master of Science degrees in Ergonomics, while some offer Master of Ergonomics or Master of Human Factors degrees. In the 2000s, occupational therapists have been moving into the field of ergonomics and the field has been heralded as one of the top ten emerging practice areas

No comments:

Post a Comment