Earthquake engineering
Earthquake engineering is the study of the behavior of buildings and structures subject to seismic loading. It is a subset of both structural and civil engineering. Eminent authority on seismic risk mitigation, Caltech professor George W. Housner is widely considered as the 'father' of the modern field of earthquake engineering. Stanford University professor John Blume’s contributions to the dynamics of structures have earned him the title of the 'father' of earthquake engineering too.
The main objectives of earthquake engineering are:
Understand the interaction between buildings or civil infrastructure and the ground.
Foresee the potential consequences of strong earthquakes on urban areas and civil infrastructure.
Design, construct and maintain structures to perform at earthquake exposure up to the expectations and in compliance with building code.
A properly engineered structure does not necessarily have to be extremely strong or expensive.
Elastically
– When an applied stress is removed, the material returns to its undeformed state. Linearly elastic materials, those that deform proportionally to the applied load, can be described by the linear elasticity equations such as Hooke's law.
Electric charge
Electric charge is a fundamental conserved property of some subatomic particles, which determines their electromagnetic interaction. Electrically charged matter is influenced by, and produces, electromagnetic fields. The interaction between a moving charge and an electromagnetic field is the source of the electromagnetic force, which is one of the four fundamental forces.
Electric current
Electric current is the flow of electric charge. The electric charge that flows is carried by, for example, mobile electrons in a conductor, ions in an electrolyte or both in a plasma.
The SI unit of electric current intensity is the ampere. Electric current is measured using an ammeter.
Electric motor
An electric motor is a device using electrical energy to produce mechanical energy, nearly always by the interaction of magnetic fields and current-carrying conductors. The reverse process, that of using mechanical energy to produce electrical energy, is accomplished by a generator or dynamo. Traction motors used on vehicles often perform both tasks.
Electric motors are found in myriad uses such as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and computer disk drives, among many other applications. Electric motors may be operated by direct current from a battery in a portable device or motor vehicle, or from alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the thousands of kilowatts. Electric motors may be classified by the source of electric power, by their internal construction, and by application.
The physical principle of production of mechanical force by the interaction of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.
Electrical network
An electrical network is an interconnection of electrical elements such as resistors, inductors, capacitors, transmission lines, voltage sources, current sources, and switches.
An electrical circuit is a network that has a closed loop, giving a return path for the current. A network is a connection of two or more components, and may not necessarily be a circuit .
Electrical networks that consist only of sources (voltage or current), linear lumped elements (resistors, capacitors, inductors), and linear distributed elements (transmission lines) can be analyzed by algebraic and transform methods to determine DC response, AC response, and transient response.
A network that also contains active electronic components is known as an electronic circuit. Such networks are generally nonlinear and require more complex design and analysis tools.
Electromagnetic radiation
Electromagnetic radiation (sometimes abbreviated EMR and often simply called light) is a ubiquitous phenomenon that takes the form of self-propagating waves in a vacuum or in matter. It consists of electric and magnetic field components which oscillate in phase perpendicular to each other and perpendicular to the direction of energy propagation. Electromagnetic radiation is classified into several types according to the frequency of its wave; these types include (in order of increasing frequency and decreasing wavelength): radio waves, microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays. A small and somewhat variable window of frequencies is sensed by the eyes of various organisms; this is what we call the visible spectrum, or light.
EM radiation carries energy and momentum that may be imparted to matter with which it interacts.
Engineering economics
Engineering economics, previously known as engineering economy, is a subset of economics for application to engineering projects. Engineers seek solutions to problems, and the economic viability of each potential solution is normally considered along with the technical aspects.
In the U.S. undergraduate engineering curricula, engineering economics is often a required course.[citation needed] It is a topic on the Fundamentals of Engineering examination, and questions might also be asked on the Principles and Practice of Engineering examination; both are part of the Professional Engineering registration process.
Considering the time value of money is central to most engineering economic analyses. Cash flows are discounted using an interest rate, i, except in the most basic economic studies.
For each problem, there are usually many possible alternatives. One option that must be considered in each analysis, and is often the choice, is the do nothing alternative. The opportunity cost of making one choice over another must also be considered. There are also noneconomic factors to be considered, like color, style, public image, etc., and are called attributes.
Costs as well as revenues are considered, for each alternative, for an analysis period that is either a fixed number of years or the estimated life of the project. The salvage value is often forgotten, but is important, and is either the net cost or revenue for decommissioning the project.
Some other topics that may be addressed in engineering economics are inflation, uncertainty, replacements, depreciation, resource depletion, taxes, tax credits, accounting, cost estimations, or capital financing. All these topics are primary skills and knowledge areas in the field of cost engineering.
Electronics
Electronics is a branch of science and technology that deals with the flow of electrons through nonmetallic conductors, mainly semiconductors such as silicon. It is distinct from electrical science and technology, which deal with the flow of electrons and other charge carriers through metal conductors such as copper. This distinction started around 1906 with the invention by Lee De Forest of the triode. Until 1950 this field was called "radio technology" because its principal application was the design and theory of radio transmitters, receivers and vacuum tubes.
The study of semiconductor devices and related technology is considered a branch of physics, whereas the design and construction of electronic circuits to solve practical problems come under electronics engineering. This article focuses on engineering aspects of electronics.
Electrostatics
Electrostatics is the branch of science that deals with the phenomena arising from stationary or slowly moving electric charges.
Since classical antiquity it was known that some materials such as amber attract light particles after rubbing. The Greek word for amber, ??e?t??? (electron), was the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law. Even though electrostatically induced forces seem to be rather weak, the electrostatic force between e.g. an electron and a proton, that together make up a hydrogen atom, is about 40 orders of magnitude stronger than the gravitational force acting between them.
Electrostatic phenomena include many examples as simple as the attraction of the plastic wrap to your hand after you remove it from a package, to the apparently spontaneous explosion of grain silos, to damage of electronic components during manufacturing, to the operation of photocopiers. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. Although charge exchange happens whenever any two surfaces contact and separate, the effects of charge exchange are usually only noticed when at least one of the surfaces has a high resistance to electrical flow. This is because the charges that transfer to or from the highly resistive surface are more or less trapped there for a long enough time for their effects to be observed. These charges then remain on the object until they either bleed off to ground or are quickly neutralized by a discharge: e.g., the familiar phenomenon of a static 'shock' is caused by the neutralization of charge built up in the body from contact with nonconductive surfaces.
Monday, June 29, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment