Monday, June 29, 2009

20) FORENSIC ENGINEERING

Forensic engineering is the investigation of materials, products, structures or components that fail or do not operate/function as intended, causing personal injury or damage to property. The consequences of failure are dealt with by the law of product liability. The field also deals with retracing processes and procedures leading to accidents in operation of vehicles or machinery. The subject is applied most commonly in civil law cases, although may be of use in criminal law cases. Generally the purpose of a forensic engineering investigation is to locate cause or causes of failure with a view to improve performance or life of a component, or to assist a court in determining the facts of an accident. It can also involve investigation of intellectual property claims, especially patents.


Methods
Methods used in forensic investigations include reverse engineering, inspection of witness statements, a working knowledge of current standards, as well as examination of the failed component itself. The fracture surface of a failed product can reveal much information on how the item failed and the loading pattern prior to failure. The study of fracture surfaces is known as fractography. Fatigue often produces a characteristic fracture surface for example, enabling diagnosis to be made of the cause of the failure. The key task in many such investigations is to identify the failure mechanism by examining the failed part using physical and chemical techniques. This activity is sometimes called root cause analysis. Corrosion is another common failure mode needing careful analysis to determine the active agents in the environment which initiated the corrosive attack. Accidents caused by fire are especially challenging owing to the frequent loss of critical evidence, although when halted early enough can usually lead to the cause. Fire investigation is a specialist skill where arson is suspected, but is also important in vehicular accident reconstruction where faulty fuel lines, for example, may be the cause of an accident.

Examples
The broken fuel pipe shown at left caused a serious accident when diesel fuel poured out from a van onto the road. A following car skidded and the driver was seriously injured when she collided with an oncoming lorry. Scanning electron microscopy or SEM showed that the nylon connector had fractured by stress corrosion cracking (SCC) due to a small leak of battery acid. Nylon is susceptible to hydrolysis when in contact with sulfuric acid, and only a small leak of acid would have sufficed to start a brittle crack in the injection moulded nylon 6,6 connector by SCC. The crack took about 7 days to grow across the diameter of the tube, hence the van driver should have seen the leak well before the crack grew to a critical size. He did not, therefore resulting in the accident. The fracture surface showed a mainly brittle surface with striations indicating progressive growth of the crack across the diameter of the pipe. Once the crack had penetrated the inner bore, fuel started leaking onto the road. The nylon 6,6 had been attacked by the following reaction, which was catalysed by the acid:

Diesel fuel is especially hazardous on road surfaces because it forms a thin oily film which cannot be easily seen by drivers. It is akin to black ice in lubricity, so skids are common when diesel leaks occur. The insurers of the van driver admitted liability and the injured driver was compensated.

Analysis
FMEA and fault tree analysis methods also examine product or process failure in a structured and systematic way, in the general context of safety engineering. However, all such techniques rely on accurate reporting of failure rates, and precise identification, of the failure modes involved.

There is some common ground between forensic science and forensic engineering, such as scene of crime and scene of accident analysis, integrity of the evidence and court appearances. Both disciplines make extensive use of optical and scanning electron microscopes, for example. They also share common use of spectroscopy (infra-red, ultra-violet and nuclear magnetic resonance) to examine critical evidence. Radiography using X-rays or neutrons is also very useful in examining thick products for their internal defects before destructive examination is attempted. Often, however, a simple hand lens to reveal the cause of a particular problem.

Trace evidence is sometimes an important factor in reconstructing the sequence of events in an accident. For example, tire burn marks on a road surface can enable vehicle speeds to be estimated, when the brakes were applied and so on. Ladder feet often leave a trace of movement of the ladder during a slipaway, and may show how the accident occurred. When a product fails for no obvious reason, SEM and Energy-dispersive X-ray spectroscopy (EDX) performed in the microscope can reveal the presence of aggressive chemicals which have left traces on the fracture or adjacent surfaces. Thus an acetal resin water pipe joint suddenly failed and caused substantial damages to a building in which it was situated. Analysis of the joint showed traces of chlorine, indicating a stress corrosion cracking failure mode. The failed fuel pipe junction mentioned above showed traces of sulfur on the fracture surface from the sulfuric acid which had initiated the crack.

Forensic materials engineering involves methods applied to specific materials, such as metals, glasses, ceramics, composites and polymers

Applications
Most manufacturing models will have a forensic component that monitors early failures to improve quality or efficiencies. Insurance companies use forensic engineers to prove liability or alternatively non liability. Most engineering disasters (structural failures such as bridge and building collapses) are subject to forensic investigation by engineers experienced in forensic methods of investigation. Rail crashes, aviation accidents and some automobile accidents are investigated by forensic engineers particularly where component failure is suspected. Furthermore, appliances, consumer products, medical devices, structures, industrial machinery, and even simple hand tools such as hammers or chisels can warrant investigations upon incidents causing injury or property damages. The failure of medical devices is often safety-critical to the user, so reporting failures and analysing them is particularly important. The environment of the body is complex, and implants must both survive this environment, and not leach potentially toxic impurities. Problems have been reported with breast implants, heart valves, and catheters, for example.

Failures which occur early in the life of a new product are vital information for the manufacturer to improve the product. New product development aims to eliminate defects by testing in the factory before launch, but some may occur during its early life. Testing products to simulate their behaviour in the external environment is a difficult skill, and may involve accelerated life testing for example. The worst kind of defect to occur after launch is a safety-critical defect, a defect which can endanger life or limb. Their discovery usually leads to a product recall or even complete withdrawal of the product from the market. Product defects often follow the bathtub curve, with high initial failures, a lower rate during regular life, followed by another rise due to wear-out. National standards, such as those of ASTM and the British Standards Institute, and International Standards can help the designer in increasing product integrity.


Historic examples



There are many examples of forensic methods used to investigate accidents and disasters, one of the earliest in the modern period being the fall of the Dee bridge at Chester, England. It was built using cast iron girders, each of which was made of three very large castings dovetailed together. Each girder was strengthened by wrought iron bars along the length. It was finished in September 1846, and opened for local traffic after approval by the first Railway Inspector, General Charles Pasley. However, on 24 May 1847, a local train to Ruabon fell through the bridge. The accident resulted in five deaths (three passengers, the train guard, and the locomotive fireman) and nine serious injuries. The bridge had been designed by Robert Stephenson, and he was accused of negligence by a local inquest.

Although strong in compression, cast iron was known to be brittle in tension or bending, yet on the day of the accident the bridge deck was covered with track ballast to prevent the oak beams supporting the track from catching fire. Stephenson took this precaution because of a recent fire on the Great Western Railway at Uxbridge, London, where Isambard Kingdom Brunel's bridge caught fire and collapsed. This act imposed a heavy extra load on the girders supporting the bridge, and probably exacerbated the accident.

One of the first major inquiries conducted by the newly formed Railway Inspectorate was conducted by Captain Simmons of the Royal Engineers, and his report suggested that repeated flexing of the girder weakened it substantially. He examined the broken parts of the main girder, and confirmed that the girder had broken in two places, the first break occurring at the centre. He tested the remaining girders by driving a locomotive across them, and found that they deflected by several inches under the moving load. He concluded that the design was basically flawed, and that the wrought iron trusses fixed to the girders did not reinforce the girders at all, which was a conclusion also reached by the jury at the inquest. Stephenson's design had depended on the wrought iron trusses to strengthen the final structures, but they were anchored on the cast iron girders themselves, and so deformed with any load on the bridge. Others (especially Stephenson) argued that the train had derailed and hit the girder, the impact force causing it to fracture. However, eye witnesses maintained that the girder broke first and the fact that the locomotive remained on the track showed otherwise.


Publications
It is unfortunate that product failures are not more widely published in the academic literature or trade literature, partly because companies do not want to advertise their problems. However, it then denies others the opportunity to improve product design so as to prevent further accidents. However, a notable exception to the reluctance to publish is the journal Engineering Failure Analysis, which publishes case studies of a wide range of different products, failing under different circumstances. There are also an increasing number of textbooks becoming available.

BOOKS ON FORENSIC ENGINEERING




No comments:

Post a Comment